Introduction to Bell's Theorem

Graduate Student Seminar

Abdullah Naeem Malik

Department of Mathematics
College of Arts and Sciences
Florida State University

November IV, 2022

The curious trio

The Nobel Prize in Physics 2022

III. Niklas Elmehed © Nobel Prize

Outreach
Alain Aspec \dagger
Prize share: $1 / 3$

III. Niklas Elmehed © Nobel Prize Outreach
John F. Clauser
Prize share: $1 / 3$

III. Niklas Elmehed © Nobel Prize Outreach
Anton Zeilinger
Prize share: $1 / 3$

Outline

Outline

- Mathematical Framework
- The EPR Paradox
- Bell's Inequality
- The experiments

States and Spaces

$$
\begin{aligned}
y(t) & =v_{0} \sin \alpha t-0.5 g t^{2} \\
x(t) & =v_{0} \cos \alpha t \\
y & =\tan \alpha x-\frac{1}{2 v_{0}^{2} \cos ^{2} \alpha} x^{2}
\end{aligned}
$$

Figure: By Zátonyi Sándor, (ifj.)
Fizped - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18893493

States and Spaces

$$
\begin{aligned}
y(t) & =v_{0} \sin \alpha t-0.5 g t^{2} \\
x(t) & =v_{0} \cos \alpha t \\
y & =\tan \alpha x-\frac{1}{2 v_{0}^{2} \cos ^{2} \alpha} x^{2}
\end{aligned}
$$

Figure: By Zátonyi Sándor, (ifj.)
Fizped - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18893493

Each point on the curve is $(x, y)=x \hat{i}+y \hat{j}=x|i\rangle+y|j\rangle$
States \Longleftrightarrow points in a vector space

Hilbert Spaces

Electron States

$$
\begin{aligned}
& \qquad \begin{aligned}
|\psi\rangle & =\cos (\theta / 2)|\hat{z}\rangle+e^{i \phi} \sin (\theta / 2)|-\hat{z}\rangle \\
& =\alpha|\hat{z}\rangle+\beta|-\hat{z}\rangle
\end{aligned} \\
& \text { where } \alpha^{2}
\end{aligned}+\beta^{2}=1 \text {. }
$$

Figure:
https://en.wikipedia.org/
wiki/File:Bloch_sphere.svg

Electron States

$$
\begin{aligned}
|\psi\rangle & =\cos (\theta / 2)|\hat{z}\rangle+e^{i \phi} \sin (\theta / 2)|-\hat{z}\rangle \\
& =\alpha|\hat{z}\rangle+\beta|-\hat{z}\rangle
\end{aligned}
$$

where $\alpha^{2}+\beta^{2}=1$

Figure:
https://en.wikipedia.org/ wiki/File:Bloch_sphere.svg

Each point on the sphere is $(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \phi)$

Multiple Electrons

Building States
$\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots \otimes\left|\psi_{n}\right\rangle$

Multiple Electrons

Building States

$\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \otimes \ldots \otimes\left|\psi_{n}\right\rangle$

Entangled Particles

$\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \neq \alpha|\hat{\mathbf{z}}\rangle \otimes|-\hat{\mathbf{z}}\rangle+\beta|-\hat{\mathbf{z}}\rangle \otimes|\hat{\mathbf{z}}\rangle$
$\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \neq \alpha|\widehat{\mathbf{x}}\rangle \otimes|-\widehat{\mathbf{x}}\rangle+\beta|-\widehat{\mathbf{x}}\rangle \otimes|\widehat{\mathbf{x}}\rangle$ where $\widehat{\mathbf{z}}$ represents $\uparrow,-\widehat{\mathbf{z}}$ represents $\downarrow, \widehat{\mathbf{x}}$ represents \longrightarrow and $-\widehat{\mathbf{x}}$ represents \longleftarrow

EPR Paradox

Adopted from https://en.wikipedia.org/wiki/EPR_paradox\#/media/File:EPR_illustration.svg

EPR Paradox Bohm

Image from https://en.wikipedia.org/wiki/EPR_paradox\#/media/File: EPR_illustration.svg

Note: $\widehat{\mathbf{z}}=\uparrow,-\widehat{\mathbf{z}}=\downarrow, \widehat{\mathbf{x}}=\longrightarrow$ and $-\widehat{\mathbf{x}}=\longleftarrow$ and $|\widehat{\mathbf{z}}\rangle=\frac{|\widehat{\mathbf{x}}\rangle+|-\widehat{\mathbf{x}}\rangle}{\sqrt{2}}$ and $|-\widehat{\mathbf{z}}\rangle=\frac{|\stackrel{\widehat{\mathbf{x}}}{ }\rangle-|-\widehat{\mathbf{x}}\rangle}{\sqrt{2}}$

Is the moon not there when no one looks at it?

© Johan Jarnestad/The Royal Swedish Academy of Sciences

Bell's Inequality

$$
\mu\left(A \cap B^{c}\right) \leq \mu\left(A \cap H^{c}\right)+\mu\left(H \cap B^{c}\right)
$$

Bell's Inequality

$$
\mu\left(A \cap B^{c}\right) \leq \mu\left(A \cap H^{c}\right)+\mu\left(H \cap B^{c}\right)
$$

Proof Sketch

$$
\begin{aligned}
A \cap B^{c} & =A \cap \mathcal{U} \cap B^{c} \\
& =A \cap\left(H \cup H^{c}\right) \cap B^{c} \\
& =(A \cap H) \cup\left(A \cap H^{c}\right) \cap B^{c} \\
& =\left(A \cap H \cap B^{c}\right) \cup\left(A \cap H^{c}\right) \\
& \subset\left(A \cap H^{c}\right) \cup\left(H \cap B^{c}\right)
\end{aligned}
$$

The actual experiments

John Clauser used calcium atoms that could emit entangled photons after he had illuminated them with a special light. He set up a filter on either side to measure the photons' polarisation. After a series of measurements, he was able to show they violated a Bell inequality.

Alain Aspect developed this experiment, using a new way of exciting the atoms so they emitted entangled photons at a higher rate. He could also switch between different settings, so the system would not contain any advance information that could affect the results.

The actual experiments

Anton Zeilinger later conducted more tests of Bell inequalities. He created entangled pairs of photons by shining a laser on a special crystal, and used random numbers to shift between measurement settings. One experiment used signals from distant galaxies to control the filters and ensure the signals could not affect each other.

